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Semi-Integral Scheme for Simulation of
Langevin Equation with Weak Inertia
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A stable and accurate algorithm for simulating massive damped Brownian
motion is proposed and discussed. The algorithm, being fully integral for the
friction and noise terms and predictor-corrector for the potential force in the
Langevin equations, is stable upon changing time step and for various masses
of the particle. In particular, the limit of zero inertia can be safely taken, and
the algorithm yields naturally the corresponding overdamped case. The steady
velocity of a particle moving in a titled periodic potential is calculated and three
algorithms are compared.
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In the past, several algorithms for numerical simulation of nonlinear
stochastic differential equations (SDEs) have been provided,® for instance,
one-step collocations,®>® predictor-corrector schemes,*> Runge-Kutta
(R-K) approaches.®” These methods of solving SEDs fire based on
integration of the equations over one time step and Taylor expansion or
predictor-corrector of the resulting equations. A subclass of SEDs that
plays a major role in a lot fields is known as Langevin equations (LE) in
mass weighted coordinate and velocity or momentum. Twenty years ago,
Ermak and McCarmmon® proposed an idea of integral solution in the
study of Brownian dynamics with hydrodynamic interactions. Very recently,
the integral algorithms for solving the overdamped Langevin equations
with additive white® and colored® noises were developed. For particular
applications, such as molecular motors as a weak-inertia Brownian trans-
port, the provided algorithms need to improve. Here, the final result of
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such speculation is presented and three different algorithms are compared:
ALGOI, a basic Runge-Kutta method; ALGO2, an implicit algorithm;
and proposed ALGO3, by using predictor-corrector approach for the
potential force and analytical integration for the friction and noise terms.

The transport process of a massive Brownian particle moving in a
nonlinear potential V(x) subject to a white noise #(¢) and external fluctua-
tions F(¢) is considered. The Langevin equation describing motion of the
particles has the form

X(t)=u(t) (1)

mi(1) = —yv(t) + f(x) +/2yT n(1) + F(1) (2)

Where y is the damping coefficient, f(x) = — V'(x), T is the temperature of
heat bath, as well as #(7) satisfies (#(z)> =0 and {x(t) n(¢')> =d(t —1').

We start from the fact that Eq. (2) can be regarded as a first-order

ordinary differential equation if the latter three terms are treated and

merged as a source term. Here it does not perform the Taylor expansion

for deterministic terms like as the traditional methods. Integrating (2) and
inserting into (1), we proceed as follows (ALGO3):

t+ A4t

x(t+4t)=x(t) + o(t") dt’ (3)

1 (7
U(t’):exp{ _;(z’_t)} v(t)+% L exp{;(s_;/)}

< f(x(5)) +/29T n(s) + F(s)} ds (4)

The integration for the potential force f(x) in (3) and (4) is now computed
by the second order R-K method within [¢, # 4+ 4¢] so that

x(t—i—At):x(t)—i-m{l —exp(—ym>} v(1)
y m

+jl) [of(x(1) + (1 =) f(x*(1))]
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and

|
o(f + At) = exp < —;At> o(1) + [af(x(1)) + (1 —a) f(x*(1))]

[r-en( 5]

ISy JHmexp{y(s—t—At)}F()ds 6)
m

Where 0 <a <1, x*(¢) is also produced by Eq. (5) with « =1 in the predictor
steps‘*>) and

t+ At
Z‘(”:L exp {;(S—Z—At)} n(s) ds (7)

Zﬂz):f“ﬁz[ exp[ (s—t)] n(s) ds )

Notice that Z, and Z, used in the corrector steps are the same as the
predictor ones, they are two Gaussian random variables with zero mean as
well as the standard deviations and cross correlation given by

2
<Zz>—{l—exp<—njzlt>} (9)
oy _m [2ml  om [, 7

<Zz>_2y{y [At y<1 eXp( mM)ﬂ

—<m>2{1—exp<—ym>n (10)
y m
and

<ZIZZ>=mZ{1—Zexp<—yAt>+exp<—2yAt)} (11)

2y m m

To gain more insight, let us discuss the present algorithm with a =3
(ALGO 3) in the cases of zero and finite inertia mass of the particle.
For weak inertia limit (m — 0), Eq. (5) becomes

x(t+At)=x(t)+21y[f(x(t) )+ f(x*(2))] At + IZY;AZ w(t)—i—%F(t) (12)
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_ 1 t+ At
Fiy=— jt F(s) ds (13)

where w(?) is a Gaussian random number with zero-mean and standard
one.

On the other hand, the form of present LE (1) and (2) with the
momentum degree of freedom is concerned with the following two-dimen-
sional SEDs(*-3-47)

4= fila() + gz(q() (1), i, j=1,2 (14)

Here ¢, =x, g;=p=mo, fi=m"'p, fr=—ym 'p—V'(X)+F, g =gpn=
g, =0, and g,,=./2yT. Performing predictor-corrector to first-order
derivative of the potential in (14), one gets the R-K algorithm:
ALGO1.%%7 It can also obtained from Egs. (5) and (6) under the condi-
tions of intermediate-to-large m or small y (i.e., the value of (y/m) At is
small), namely,

x(t+A4t)=x(t)+v(t) At

1
v(t+ At) = <1 —LA[) v(t) +% [f(x(2))+ f(x*(2))] 4t

T4l o)+ 2 F (15)

m m

In order to handle stiff problem caused by weak inertia, we now derive
an implicit algorithm by using a farmer insertion for the friction term in (2)
or (14): [1*4" yu(s) ds = yo(t + At) At. The ALGO2 is obtained as

1

oty a0 S RO 4

VITAL gy A gy (16)

+
m+yAtw m—+y At

v(t+4t) =

The present algorithm (ALGO3) has given the right prescription
both for m — 0 and large-m, it is believed that it should be very accurate
even for finite m. To check this, we will test the above three algorithms
computing the average steady velocity of a particle moving in a periodic
potential V(x)= —sin(x) which is titled by a constant force F(¢)= F. It has
been solved analytically in the overdamped limit m — 0.V After using a
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Fig. 1. Dependence of the steady velocity on time steps for 7=1.0, F=0.4, as well as (a)
m=0.01, (b) m=1.0. Dashed line with triangles, ALGO1; thin solid with squares, ALGO2;
and thick solid line with circles, ALGO3.
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scale transformation,''? the dimensionless damping coefficient is assumed
to be unit one (y=1.0), the rescaled mass m, the temperature 7, and
the force F are three basic parameters of the model. The claim will be
supported that the semi-integral algorithm proposed here (ALGO3) is
convergence and stable on changing time step and various inertia mass of
the particle.

In this paper, the numerical calculations for the steady velocity of the
particle are done starting from x(0) =7/2 and v(0) =0 with averaging over
N =10? stochastic realization. The average velocity of the particle at the
stationary states is determined by

(17)

where ¢t >t, and (y/m) t,>> 1.

Dependence of the simulated results on time steps for weak and finite
inertia mass of the particle is plotted in Figs. 1(a) (m=0.01) and (b)
(m=1.0), respectively. Here the other parameters are 7=1.0 and F=04.
It is seen from Fig. 1(a) that the numerical data are same approximately
for the three algorithms as 47<0.01, however, the data produced by
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Fig. 2. The steady velocity as a function of m for 7= 1.0 and F=0.4. Dashed with triangles,
ALGOI; thin solid line with squares, ALGO2; thin solid line with circles, ALGO3; and thick
short line is theoretical data.
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ALGOI1 takes numerical overflow when Ar>0.01 (ie., (y/m)dt>1).
Clearly, ALGO3 is the most stable algorithm on changing time steps. From
Fig. 1(b) one observes that both ALGO1 and ALGO3 versus time steps
are convergence for the massive damped cases, and up to 471 =0.25 ALGO3
reproduced the 4¢1=0.001 value quite well. But the results calculated by
ALGO?2 are symmetrically larger than that of other two algorithms. So it
is concluded that ALGO3 has a range of convergence larger than either
ALGOI or ALGO2. We stress again that also for ALGO3 the limit 72 — 0
and finite A4¢ can be safely taken.

The steady velocity of the particle as a function of inertia mass is
shown in Fig. 2 for T=1.0 and F=0.4. The theoretical value is {x),, =
0.2635 in the overdamped limit. It is observed that ALGO2 and ALGO3
can approach to this exact value from two different directions, however,
ALGO1 occurs numerical overflow when m < 3 x 10 —3. Moreover, ALGO3
is also in keeping with the calculated results of ALGOl when massive
inertia is taken, but ALGO2 does not. Therefore, the present algorithm can
be applied to the underdamped cases.

Finally, the average velocity of the particle for various inertia as a
function of the temperature is shown in Fig. 3. Here the parameters of
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Fig. 3. The steady velocity calculated by ALGO3 (solid lines) and ALGO! (dashed lines)
as a function of the temperature for F=0.8 and for five values m =40, 20, 10, 5 and 2 for top
to bottom.
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simulating algorithm are A7 =0.1, =10% and ¢, =5 x 102. The results show
that the steady velocity can achieve a local maximum at a finite tem-
perature when m > 5.0 and F> 0.5. Thus a peak phenomenon is observed,
here the inertia of the particle acts as a surrogate to a time-oscillating filed
appeared in the stochastic resonance.

In summary, a stable and accurate semi-integral approach for simu-
lating Langevin equations covering with a widely varying parameter values
is proposed. Which has the nice properties that it can be reduced to the
predictor-corrector algorithms for the overdamped and underdamped
SEDs. Through the studies on the steady velocity of a particle with various
inertia in a titled periodic potential, it is found that the present scheme
gives a larger range of convergence for time steps comparing with the
differential schemes. Any value of inertia mass of the particle can be con-
sidered and the stiff difficult has been avoided. Moreover, the average
steady velocity of the particle is shown as a local peak function of the
temperature.

ACKNOWLEDGMENTS

The work was supported by the Foundation of Excellent Young
Teachers from the Ministry of Education, China and the National Natural
Science Foundation of China under Grant 19605002.

REFERENCES

1. For a review, see R. Mannella, in Noise in Nonlinear Dynamical Systems, Vol. 111, F. Moss
and P. V. E. McClintock, eds. (Cambridge University Press, Cambridge, England, 1989),
p. 189.

. J. M. Sancho, M. San Miguel, S. L. Kata, and J. D. Gunto, Phys. Rev. A 26:1589 (1982).

R. F. Fox, Phys. Rev. A 43:2649 (1991).

R. Mannella and V. Palleschi, Phys. Rev. A 40:3381 (1989).

J. D. Bao, Y. Z. Zhuo, and X. Z. Wu, J. Stat. Phys. 66:1653 (1992).

R. L. Honeycutt, Phys. Rev. A 45:604 (1992).

. E. Hershkovitz, J. Chem. Phys. 108:9253 (1998).

. D. L. Ermak and J. A. McCammon, J. Chem. Phys. 69:1352 (1978).

9. G. A. Cecchi and M. O. Magnasco, Phys. Rev. Lett. 76:1968 (1996).

10 J. D. Bao, Y. Abe, and Y. Z. Zhuo, J. Stat. Phys. 90:1037 (1998).

11. H. Risken, The Fokker—Planck Equation (Springer, Berlin, 1984).

12. B. Linder, L. Schimansky-Geier, P. Reimann, P. Hinggi, and M. Nagaoka, Phys. Rev. E

59:1417 (1999).

0N oL AL

Communicated by J. L. Lebowitz



